作者:admin 发布时间:2023-12-14 15:30 分类:资讯 浏览:33 评论:0
1、图像复原从数学角度考虑,它等价于第一类fredholm积分方程,是一种反问题,具有很大的病态性,因此,必须进行正则化处理。从统计的角度看,正则化处理其实就是一种图像的先验信息约束 。
2、正则化是一种回归的形式,它将系数估计(coefficient estimate)朝零的方向进行约束、调整或缩小。也就是说,正则化可以在学习过程中降低模型复杂度和不稳定程度,从而避免过拟合的危险。
3、看到没,这两个等价公式说明了,正则化的本质就是,给优化参数一定约束,所以,正则化与加限制约束,只是变换了一个样子而已。
4、L1正则化就是在 loss function 后面加上L1范数,这样比较容易求到稀疏解。
1、古典概率模型要求满足两个条件:(1)试验的所有可能结果是有限的;(2)每一种可能结果出现的可能性(概率)相等。 如抛一枚硬币,在抛之前,主观推断P(正面朝上)=0.5。
2、概率 用于在已知一些参数的情况下,预测接下来的观测所得到的结果,而似然性则是用于在已知某些观测所得到的结果时,对有关事物的性质的参数进行估计。在这种意义上,似然函数可以理解为 条件概率 的逆反。
3、似然函数就是得到这个样本的概率,由于每次抽样独立,所以把这几个概率乘起来就是得到这个样本的概率了,也就是似然函数。
4、统计学中,似然函数是一种关于统计模型参数的函数。给定输出x时,关于参数θ的似然函数L(θ|x)(在数值上)等于给定参数θ后变量X的概率:L(θ|x)=P(X=x|θ)。
5、对于离散型随机变量,似然函数是指参数θ在给定观测数据x的条件下出现的概率。
6、只要有统计模型,就会有似然函数,(似然函数是建立在统计模型上的)给定输出X(x1,x..)时,关于参数θ的似然函数L(θ|x)(在数值上)等于给定参数θ后变量X的概率:L(θ|x)=P(X=x|θ)。
通常的正则化方法有基于变分原理的Tikhonov 正则化、各种迭代方法以及其它的一些改进方法,在各类反问题的研究中被广泛采用,并得到深入研究。
正则化的常见方法 提前终止法(earlystopping)提前终止法适用于模型表达能力很强的时候。
L1范数:权值向量w中各个元素的绝对值之和,L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择。 L2范数:权值向量w中各个元素的平方和然后再求平方根,L2正则化可以防止模型过拟合;一定程度上,L1也可以防止过拟合。