作者:admin 发布时间:2024-03-03 03:15 分类:资讯 浏览:24 评论:0
1、函数定义 在某变化过程中有两个变量x,y,按照某个对应法则,对于给定的x,有唯一确定的y与之对应,那么y就叫做x的函数。其中x叫自变量,y叫因变量。
2、函数的概念定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。
3、函数的传统定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量。
4、函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
1、函数定义 在某变化过程中有两个变量x,y,按照某个对应法则,对于给定的x,有唯一确定的y与之对应,那么y就叫做x的函数。其中x叫自变量,y叫因变量。
2、函数定义 在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素。函数是数学中的一种对应关系,是从非空数集A到实数集B的对应。
3、函数的传统定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量。
4、函数的概念定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。
函数的传统定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量。
函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
这个定义的含义是:凡是公式中含有变量x,则该式子叫做x的函数。所以函数是指公式里含有变量的意思。我们所说的方程的确切定义是指含有未知数的等式。
函数的定义:函数的传统定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量。
所以“函数”是指公式里含有变量的意思。我们所说的方程的确切定义是指含有未知数的等式。但是方程一词在我国早期的数学专著《九章算术》中,意思指的是包含多个未知量的联立一次方程,即所说的线性方程组。
函数是一种数集到数集的映射。主要说明 某个参数会随着另一个参数的变化而变化(应变量随着自变量的变化而变化),自变量可以是1个(一元函数),也可以是2个(二元函数),甚至更多(多元函数)。
所以函数是指公式里含有变量的意思。我们所说的方程的确切定义是指含有未知数的等式。
在初中课本中的定义是:一般的,有两个变量XY,其中一个变量Y随着另一个变量X的变化而变化,并且,给出一个X值都有唯一的一个Y值与它对应。X叫自变量,Y叫因变量。
函数定义三要素:在某运动过程中,主要体现在自变量的取值范围,存在两个变量,为了叙述方便,设为x,y,对于x每取一个确定值,y都有唯一并且确定的值与之对应,那么y是x的函数,x叫做自变量。
函数的传统定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量。
函数是数学名词,代数式中,凡相关的两数X与Y,对于每个X值,都只有一个Y的对应值。这种对应关系就表示Y是X的函数。
这个定义的含义是:凡是公式中含有变量x,则该式子叫做x的函数。所以函数是指公式里含有变量的意思。我们所说的方程的确切定义是指含有未知数的等式。